Quiz 4 Polymer Physics Fall 2000
 10/18/00

The following equation is a generic form for the differential equation used in class to describe a simple, single mode Debye mechanical relaxation:

$$
\tau \frac{d \gamma(t)}{d t}+\gamma(t)=\tau J_{U} \frac{d \sigma}{d t}+J_{R} \sigma(t)
$$

where σ is the stress, γ is the strain and τ is the time constant.
a) -Simplify this equation for a creep measurement,
-and for a stress relaxation measurement.
-Give the limits used to solve the differential equation in both cases $\left(G_{U}=1 / J_{U}, G_{R}=\right.$ $1 / \mathrm{J}_{\mathrm{R}}$.
b) -Show that the solution to the creep differential equation is:
$J(t)=\frac{\gamma(t)}{\sigma_{0}}=J_{U}+\left(J_{R}-J_{U}\right)\left(1-\exp \left(\frac{-t}{\tau}\right)\right)$
Using for $d y / d x+P y=Q$, where P and Q are independent of y but can involve x, the solution is $y=\exp \left(\int-\operatorname{Pdx}\right)\left\{c+\int\left(\exp \left(\int \operatorname{Pdx}\right) \mathrm{Q} d x\right)\right\}$ where c is a constant that can be solved for the limiting conditions of $\mathrm{J}=\mathrm{J}_{\mathrm{U}}$ at $\mathrm{t}=0$ or for the $\mathrm{t}=\infty$ limit of $\gamma=\Delta \mathrm{J} \sigma_{0}$.
-Sketch $\mathrm{J}(\mathrm{t})$ versus t showing J_{U} and J_{R}.
c) -What is the main assumption involved in a simple single mode Debye relaxation that is the basis of the equation given above.
d) The dynamic modulus, G^{*}, is given by:
$G^{*}=G_{U}-\frac{G_{U}-G_{R}}{1+i \omega \tau}$
-From this equation show that:
$G^{\prime}=G_{R}+\frac{\left(G_{U}-G_{R}\right) \omega^{2} \tau^{2}}{1+\omega^{2} \tau^{2}}$ and $G^{\prime \prime}=\frac{\left(G_{U}-G_{R}\right) \omega \tau}{1+\omega^{2} \tau^{2}}$
-How does this compare with the loss and storage compliance given in class?
e) -What are the mechanical analogues for the applied electric field and the electronic
displacement in a dielectric relaxation measurement?
-How do E and D relate to the dielectric constant, ε ?
-How does the polarization, P , relate to D and E ?

Answers Quiz 4 Polymer Physics

a) Creep: $\tau \frac{d \gamma(t)}{d t}+\gamma(t)=J_{R} \sigma_{0}$
$\mathrm{J}=\mathrm{J}_{\mathrm{U}}$ at $\mathrm{t}=0$ or for the $\mathrm{t}=\infty$ limit of $\gamma=\left(\mathrm{J}_{\mathrm{U}}+\Delta \mathrm{J}\right) \sigma_{0}$.
Stress Relaxation: $\gamma_{0}=\tau J_{U} \frac{d \sigma}{d t}+J_{R} \sigma(t)$
$\mathrm{G}=\mathrm{G}_{\mathrm{U}}=1 / \mathrm{J}_{\mathrm{U}}$ at $\mathrm{t}=0$ or for the $\mathrm{t}=\infty$ limit of $\sigma=\Delta \mathrm{G} \gamma_{0}$.

b) $\frac{d J(t)}{d t}+\frac{J(t)}{\tau}=\frac{J_{R}}{\tau}$
so $\mathrm{P}=1 / \tau$ and $\mathrm{Q}=\mathrm{J}_{\mathrm{R}} / \tau$,
then:
$J(t)=\exp \left(\frac{-t}{\tau}\right)\left\{C+\frac{J_{R}}{\tau} \int \exp \left(\frac{t}{\tau}\right) d t\right\}=C \exp \left(\frac{-t}{\tau}\right)+J_{R}$
at $\mathrm{t}=0 \mathrm{~J}(\mathrm{t})=\mathrm{J}_{\mathrm{U}}$, so $\mathrm{C}=\mathrm{J}_{\mathrm{U}}-\mathrm{J}_{\mathrm{R}}$. Then,
$J(t)=J_{U} \exp \left(\frac{-t}{\tau}\right)-J_{R} \exp \left(\frac{-t}{\tau}\right)+J_{R}=J_{U}+\Delta J\left(1-\exp \left(\frac{-t}{\tau}\right)\right)$
c) The main assumption is that the response is proportional to the distance from the relaxed state.
d) The equation is multiplied by $(1-i \omega \tau) /(1-i \omega \tau)$ to yield:
$G^{*}=G_{U}-\frac{\Delta G}{1+\omega^{2} \tau^{2}}+i \frac{\Delta G \omega \tau}{1+\omega^{2} \tau^{2}}$
which yields the imaginary modulus given. The real modulus given can be obtained by rearrangement of the above equation in the following way,

$$
\begin{aligned}
G^{\prime}= & G_{U}-\frac{\Delta G}{1+\omega^{2} \tau^{2}}=\frac{G_{U}+G_{U} \omega^{2} \tau^{2}-G_{U}+G_{R}}{1+\omega^{2} \tau^{2}} \\
& =\frac{G_{R}\left(1+\omega^{2} \tau^{2}\right)+G_{U} \omega^{2} \tau^{2}-G_{R} \omega^{2} \tau^{2}}{1+\omega^{2} \tau^{2}}=G_{R}+\frac{\Delta G}{1+\omega^{2} \tau^{2}}
\end{aligned}
$$

The loss and storage compliances are given by:

$$
\begin{aligned}
& J^{\prime}=J_{U}+\frac{\left(J_{R}-J_{U}\right)}{1+\omega^{2} \tau^{2}} \\
& J^{\prime \prime}=\frac{\left(J_{R}-J_{U}\right) \omega \tau}{1+\omega^{2} \tau^{2}}
\end{aligned}
$$

The τ 's in the two equations are not the same but are related.
e) E is analogous to stress and D to strain
$D=\varepsilon E$
$\mathrm{D}=\mathrm{E}+4 \pi \mathrm{P}$

